Electronic transduction of proton translocations in nanoassembled lamellae of bacteriorhodopsin

Research Area: Uncategorized Year: 2014
Type of Publication: Article
Journal: ACS Nano Volume: 8
Number: 8 Pages: 7834-7845
cited By (since 1996)1
An organic field-effect transistor (OFET) integrating bacteriorhodopsin (bR) nanoassembled lamellae is proposed for an in-depth study of the proton translocation processes occurring as the bioelectronic device is exposed either to light or to low concentrations of general anesthetic vapors. The study involves the morphological, structural, electrical, and spectroscopic characterizations necessary to assess the functional properties of the device as well as the bR biological activity once integrated into the functional biointerlayer (FBI)-OFET structure. The electronic transduction of the protons phototranslocation is shown as a current increase in the p-type channel only when the device is irradiated with photons known to trigger the bR photocycle, while Raman spectroscopy reveals an associated C=C isomer switch. Notably, higher energy photons bring the cis isomer back to its trans form, switching the proton pumping process off. The investigation is extended also to the study of a PM FBI-OFET exposed to volatile general anesthetics such as halothane. In this case an electronic current increase is seen upon exposure to low, clinically relevant, concentrations of anesthetics, while no evidence of isomer-switching is observed. The study of the direct electronic detection of the two different externally triggered proton translocation effects allows gathering insights into the underpinning of different bR molecular switching processes. © 2014 American Chemical Society.
[ Back ]
Copyright © CSGI 2012 - Credits - Cookie Policy - Privacy - Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy